

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T1110**(E)**(A8)T

NATIONAL CERTIFICATE

MECHANOTECHNICS N5

(8190225)

8 August 2019 (X-Paper) 09:00–12:00

This question paper consists of 5 pages and a formula sheet of 3 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MECHANOTECHNICS N5 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Write neatly and legibly.

QUESTION 1

An epicyclic gear train has a sun wheel with 20 teeth and two planet wheels of 40 teeth each, the latter meshing with the internal teeth of a fixed annulus. The input shaft carrying the sun wheel transmits 4 kW at 300 r/min. The output shaft is connected to an arm that carries the planet wheels.

1.1	Calculate the speed of the output shaft.	(6)

- 1.2 Calculate the torque transmitted if the overall efficiency is 95%. (6)
- 1.3 If the annulus is rotated independently, what should its speed be to make the output shaft rotate at 10 r/min? (4)
 [16]

QUESTION 2

2.1 Explain the following code in the construction of a steel-wire rope used to hoist elevators:

$$6 \times 19 (12.6.1)$$
 (3)

2.2 The thickness of a four-ply leather belt is 14 mm and it transmits 50 kW from a pulley that is 1,6 m in diameter and has a speed of 230 r/min. The angle of wrap is 175° and the coefficient of friction between the belt and the pulley is 0,4. The density of the belt material is 800 kg/m³. The maximum allowable belt tension is 14 kN/m widths per ply.

Consider 1 m width of the belt and calculate:

2.2.1	The speed of the belt	(2)
2.2.2	The belt mass per metre length	(2)
2.2.3	The belt tensions T_1 and T_2 (consider centrifugal tension)	(7)
2.2.4	The power transmitted by 1 m belt width	(2)
2.2.5	The actual belt width	(2) [18]

QUESTION 3

- 3.1 State THREE common problems experienced with bucket elevators and bucket conveyors. (3 × 2) (6)
- 3.2 A bucket elevator is used to lift coal with a density of 800 kg/m³ at a rate of 300 ton/h through a vertical height of 60 m. The chain speed is 0,4 m/s and the spacing of the bucket is 1 m. The head has an efficiency of 88%.

Calculate:

* *	(6)
	€ [™]

3.2.2 The power of the driving motor (4)

[**16**]

QUESTION 4

Endless rope haulage is required to deliver 800 ton of rock per eight-hour shift over a distance of 900 m on a 12° average incline. The speed of the rope is 3,5 km/h and its mass is 3 kg/m. The track resistance is assumed to be 180 N per ton and the mechanical efficiency is 82%. The tubs have a mass of 250 kg empty and 1 000 kg full.

Calculate:

4.1	The total number of tubs required	(4)
4.2	The total mass in conveyance	(5)
4.3	The motor power	(7) [16]

QUESTION 5

5.1	Give TWO	main	differences	in	the	construction	of	goods	elevators	and	
	passenger e	elevatc	ors.						(2	+ 2)	(4)

5.2 The loaded cage of a good hoist has a mass of 1 500 kg. The rope passes over a drum at the top of the shaft and then to a balance mass of 500 kg. The cage and balance mass move in guides and the friction force at each guide is 600 N. The drum has a diameter of 1,6 m, a mass of 700 kg and a radius of gyration of 0,6 m. The maximum acceleration that occurs at a speed of 2,4 m/s is 1,9 m/s².

Calculate:

- 5.2.1 The motor power required to drive the drum at maximum acceleration
- 5.2.2 The rope tensions during deceleration if the maximum velocity is 5 m/s and deceleration is at a uniform rate from maximum velocity to rest over the last 4 m of travel

Copyright reserved

(8)

(6) **[18]**

QUESTION 6

- 6.1 Calculate the torque required to increase the speed of a flywheel with a mass of 1 200 kg and a radius of gyration of 800 mm from 120 r/min to 160 r/min in 40 seconds.
- 6.2 A flywheel has a mass of 580 kg and a radius of gyration of 810 mm.

Calculate:

6.2.1	The kinetic energy required to give the flywheel a speed of 110 r/min from rest	(2)
6.2.2	The uniform torque required to accelerate the flywheel from 56 r/min to 120 r/min	(2)
6.2.3	The time required for this acceleration	(4) [16]
	TOTAL:	100

(8)

FORMULA SHEET

 $m = \frac{PCD}{T}$ 1. 2. $DO = m \times (T + 2)$ $4. \qquad Ke = \frac{1}{2}mv^2$ $C = \frac{m}{2} \times (TA + TB)$ 3. 6. $VR = \frac{PCD \ of \ gear}{PCD \ of \ pinion}$ $VR = \frac{TA}{TB}$ 5. $VR = \frac{NB}{NA}$ 7. 8. $NA \times TA = NB \times TB$ $Ft = \frac{2 \times T}{PCD}$ 10. $Fr = Ft \times Tan \phi$ 9. $Fn = Ft \times Sec^{\phi}$ 12. Ie = IA + $(VR)^2$ IB + $(VR)^2$ IC + $(VR)^2$ ID 11. 14. $T\alpha = TA + \frac{(NB)}{(NA)}\frac{TBC}{\eta 1} + \frac{(ND)}{(NA)}\frac{TD}{\eta 1\eta 2}$ $T\alpha = Ie \times \alpha A$ 13. $\frac{NB}{NA} = \frac{\omega B}{\omega A} = \frac{\alpha B}{\alpha A} = \frac{IA}{IB}$ 16. $T_{OUTPUT} = T_{INPUT} \times GR \times \eta$ 15. $P = \frac{\pi \times PCD}{n}$ 17. 18. Ti + To + Th = 0Input speed Teeth on driven gears 19. TA = TS + 2TP20. $\frac{\partial F_{F}}{\partial utput speed} = \frac{\partial F_{F}}{\partial teth on driving gears}$ 21. $v = \pi \times (d + t) \times N$ 22. $P = Te \times v$ $\frac{T1}{T2} = e^{\mu\theta}$ 24. T1 = $\delta \times A$ 23. 26. $\frac{T1 - TC}{T2 - TC} = e^{\mu\theta cosec \ \alpha}$ $Tc = m \times v^2$ 25. $L = \frac{\pi}{2} \times (D+d) + \frac{(D \pm d)^2}{4 \times C} + 2C$ 28. $Tg = m \times g \times \sin \phi$ 27. 30. $v = \sqrt{\mu \times g \times r}$ 29. $v \equiv \omega \times r$

$$31. \qquad v = \sqrt{\frac{g \times b \times r}{2 \times h}} \qquad 32. \qquad v = \sqrt{gr\left[\frac{\mu + Tan \theta}{1 - \mu Tan \theta}\right]}$$

$$33. \qquad v = \sqrt{gr\left[\frac{hTan\theta + b/2}{h - b/2 \tan \theta}\right]} \qquad 34. \qquad \frac{T1}{T2} = \left[\frac{1 + \mu Tan \theta}{1 - \mu Tan \theta}\right]^n$$

$$35. \qquad Cos \frac{\theta}{2} = \frac{R - r}{C} \qquad 36. \qquad Cos \frac{\theta}{2} = \frac{R + r}{C}$$

$$37. \qquad m = w \times t \times L \times P \qquad 38. \qquad T1 = w \times n \times ft$$

$$39. \qquad P = Pg + P\mu \qquad 40. \qquad r = \frac{I \times \omega}{T}$$

$$41. \qquad P = \frac{2 \times \pi \times N \times T}{60} \qquad 42. \qquad T = F \times r$$

$$43. \qquad w = do + 3d - 1,5155P \qquad 44. \qquad do = de + 0,65P$$

$$45. \qquad w = \frac{\pi \times m}{2} (\cos^2 \theta) \qquad 46. \qquad h = m\left[1 - \frac{\pi}{4} (\sin \theta \cos \theta)\right]$$

$$47. \qquad \frac{p1}{Rho} + \frac{(v1)^2}{2} + gh1 = \frac{p2}{Rho} + \frac{(v2)^2}{2} + gh2 \qquad 48. \qquad Vw (Va) = \sqrt{\frac{gx^2}{2y}}$$

$$49. \qquad v = C\sqrt{mi} \qquad 50. \qquad hf = \frac{4 \times f \times \ell \times v^2}{2 \times g \times d}$$

$$51. \qquad hf = \frac{f \times \ell \times O^2}{3,026 \times d^5} \qquad 52. \qquad Q = \frac{Cd \times A \times a \times \sqrt{(2gh)}}{\sqrt{(A^2 - a^2)}}$$

$$53. \qquad Q = Cd \times A \times \frac{\sqrt{(2gh)}}{\sqrt{(m^2 - 1)}} \qquad 54. \qquad V = \sqrt{(g \times R \times \cos \theta)}$$

$$55. \qquad Vol. \ bucket \frac{m \times s}{p \times v} \qquad 56. \qquad L = 2C + \pi D$$

$$57. \qquad Setf - weight \frac{m1 \times g \times S^2}{8 \times h} \qquad 58. \qquad One \ boad \frac{m2 \times g \times S}{4 \times h}$$

60. $T(acc drum) = I \times \alpha = mk^2 \frac{a}{R}$

Copyright reserved

T (acc load) = (T1 - T2)R

59.

61. $P = \omega \times T$ 62.

$$63. Ke = \frac{1}{2}I \times \omega^2 64.$$

65. $P = \text{Ke} \times \text{operations/sec}$ 66. $(I_1 + I_2) \omega_3 = I_1 \omega_1 + I_2 \omega_2$

67.
$$\mu = \operatorname{Tan} \theta$$
 68. $\eta = \frac{\operatorname{Tan} \theta}{\operatorname{Tan} (\theta + \phi)}$

$$69. T = \mu \times F \times Re \times n 70.$$

71.
$$T = \mu \times n \times (Fc - S)R$$
 72. $Fc = m \times \omega^2 \times \gamma$

73.
$$Fc = \frac{mv^2}{\gamma}$$
 74.

75. Side thrust =
$$FcCos^{\theta} - mg Sin\theta$$
 76.

$$\mu = \frac{FcCos\theta - mgSin\theta}{mgCos\theta + FcSin\theta}$$

Tractive effort = mass on driving wheels $\times \mu \times g$

77.
$$P_l = CmgL + mgh$$

 $\omega = 2\pi \times N$

 $Ke = rac{work \ done}{efficiency}$

 $T = \frac{\mu \times F \times Re}{\sin \theta}$